Some checks failed
Deploy on push / deploy (push) Failing after 5m57s
### 🚀 ML Models Runtime Preloading - **🔧 models loading**: Перенесена предзагрузка ML моделей из Docker build в runtime startup - Убрана предзагрузка из `Dockerfile` - модели теперь загружаются после монтирования `/dump` папки - Добавлена async функция `preload_models()` в `services/search.py` для фоновой загрузки - Интеграция предзагрузки в `lifespan` функцию `main.py` - Использование `asyncio.run_in_executor()` для неблокирующей загрузки моделей - Исправлена проблема с недоступностью `/dump` папки во время сборки Docker образа
876 lines
36 KiB
Python
876 lines
36 KiB
Python
import asyncio
|
||
import gzip
|
||
import json
|
||
import os
|
||
import pickle
|
||
import time
|
||
from pathlib import Path
|
||
from typing import Any, Dict, List
|
||
|
||
import muvera
|
||
import numpy as np
|
||
|
||
from settings import MUVERA_INDEX_NAME, SEARCH_MAX_BATCH_SIZE, SEARCH_PREFETCH_SIZE
|
||
from utils.logger import root_logger as logger
|
||
|
||
# Отложенный импорт SentenceTransformer для избежания блокировки запуска
|
||
SentenceTransformer = None
|
||
primary_model = "paraphrase-multilingual-MiniLM-L12-v2"
|
||
|
||
|
||
# 💾 Настройка локального кеша для HuggingFace моделей
|
||
def get_models_cache_dir() -> str:
|
||
"""Определяет лучшую папку для кеша моделей"""
|
||
# Пробуем /dump если доступен для записи
|
||
dump_path = Path("/dump")
|
||
logger.info(
|
||
f"🔍 Checking /dump - exists: {dump_path.exists()}, writable: {os.access('/dump', os.W_OK) if dump_path.exists() else 'N/A'}"
|
||
)
|
||
|
||
if dump_path.exists() and os.access("/dump", os.W_OK):
|
||
cache_dir = "/dump/huggingface"
|
||
try:
|
||
Path(cache_dir).mkdir(parents=True, exist_ok=True)
|
||
logger.info(f"✅ Using mounted storage: {cache_dir}")
|
||
return cache_dir
|
||
except Exception as e:
|
||
logger.warning(f"Failed to create {cache_dir}: {e}")
|
||
|
||
# Fallback - локальная папка ./dump
|
||
cache_dir = "./dump/huggingface"
|
||
Path(cache_dir).mkdir(parents=True, exist_ok=True)
|
||
logger.info(f"📁 Using local fallback: {cache_dir}")
|
||
return cache_dir
|
||
|
||
|
||
MODELS_CACHE_DIR = get_models_cache_dir()
|
||
# Используем HF_HOME вместо устаревшего TRANSFORMERS_CACHE
|
||
os.environ.setdefault("HF_HOME", MODELS_CACHE_DIR)
|
||
|
||
# Global collection for background tasks
|
||
background_tasks: List[asyncio.Task] = []
|
||
|
||
|
||
async def preload_models() -> None:
|
||
"""🚀 Асинхронная предзагрузка моделей для кеширования"""
|
||
logger.info("🔄 Начинаем предзагрузку моделей...")
|
||
|
||
# Ждем импорта SentenceTransformer
|
||
_lazy_import_sentence_transformers()
|
||
|
||
if SentenceTransformer is None:
|
||
logger.error("❌ SentenceTransformer недоступен для предзагрузки")
|
||
return
|
||
|
||
# Создаем папку для кеша
|
||
Path(MODELS_CACHE_DIR).mkdir(parents=True, exist_ok=True)
|
||
logger.info(f"📁 Используем кеш директорию: {MODELS_CACHE_DIR}")
|
||
|
||
# Список моделей для предзагрузки
|
||
models = [
|
||
"paraphrase-multilingual-MiniLM-L12-v2", # Основная многоязычная модель
|
||
"all-MiniLM-L6-v2", # Fallback модель
|
||
]
|
||
|
||
for model_name in models:
|
||
try:
|
||
# Проверяем, есть ли модель в кеше
|
||
if _is_model_cached(model_name):
|
||
logger.info(f"🔍 Модель уже в кеше: {model_name}")
|
||
continue
|
||
|
||
logger.info(f"🔽 Загружаем модель: {model_name}")
|
||
|
||
# Запускаем загрузку в executor чтобы не блокировать event loop
|
||
loop = asyncio.get_event_loop()
|
||
await loop.run_in_executor(
|
||
None, lambda name=model_name: SentenceTransformer(name, cache_folder=MODELS_CACHE_DIR)
|
||
)
|
||
|
||
logger.info(f"✅ Модель загружена: {model_name}")
|
||
|
||
except Exception as e:
|
||
logger.warning(f"❌ Не удалось загрузить {model_name}: {e}")
|
||
|
||
logger.info("🚀 Предзагрузка моделей завершена!")
|
||
|
||
|
||
def _is_model_cached(model_name: str) -> bool:
|
||
"""🔍 Проверяет наличие модели в кеше"""
|
||
try:
|
||
cache_path = Path(MODELS_CACHE_DIR)
|
||
model_cache_name = f"models--sentence-transformers--{model_name}"
|
||
model_path = cache_path / model_cache_name
|
||
|
||
if not model_path.exists():
|
||
return False
|
||
|
||
# Проверяем наличие snapshots папки (новый формат HuggingFace)
|
||
snapshots_path = model_path / "snapshots"
|
||
if snapshots_path.exists():
|
||
# Ищем любой snapshot с config.json
|
||
for snapshot_dir in snapshots_path.iterdir():
|
||
if snapshot_dir.is_dir():
|
||
config_file = snapshot_dir / "config.json"
|
||
if config_file.exists():
|
||
return True
|
||
|
||
# Fallback: проверяем старый формат
|
||
config_file = model_path / "config.json"
|
||
return config_file.exists()
|
||
except Exception:
|
||
return False
|
||
|
||
|
||
def _lazy_import_sentence_transformers():
|
||
"""🔄 Lazy import SentenceTransformer для избежания блокировки старта приложения"""
|
||
global SentenceTransformer # noqa: PLW0603
|
||
if SentenceTransformer is None:
|
||
try:
|
||
from sentence_transformers import SentenceTransformer as SentenceTransformerClass
|
||
|
||
SentenceTransformer = SentenceTransformerClass
|
||
logger.info("✅ SentenceTransformer импортирован успешно")
|
||
except ImportError as e:
|
||
logger.error(f"❌ Не удалось импортировать SentenceTransformer: {e}")
|
||
SentenceTransformer = None
|
||
return SentenceTransformer
|
||
|
||
|
||
class MuveraWrapper:
|
||
"""🔍 Real vector search with SentenceTransformers + FDE encoding"""
|
||
|
||
def __init__(self, vector_dimension: int = 768, cache_enabled: bool = True, batch_size: int = 100) -> None:
|
||
self.vector_dimension = vector_dimension
|
||
self.cache_enabled = cache_enabled
|
||
self.batch_size = batch_size
|
||
self.encoder: Any = None
|
||
self.buckets = 128 # Default number of buckets for FDE encoding
|
||
self.documents: Dict[str, Dict[str, Any]] = {} # Simple in-memory storage for demo
|
||
self.embeddings: Dict[str, np.ndarray | None] = {} # Store encoded embeddings
|
||
|
||
# 🚀 Откладываем инициализацию модели до первого использования
|
||
logger.info("🔄 MuveraWrapper инициализирован - модель будет загружена при первом использовании")
|
||
self.encoder = None
|
||
self._model_loaded = False
|
||
|
||
def _ensure_model_loaded(self) -> bool:
|
||
"""🔄 Убеждаемся что модель загружена (lazy loading)"""
|
||
if self._model_loaded:
|
||
return self.encoder is not None
|
||
|
||
# Импортируем SentenceTransformer при первой необходимости
|
||
sentence_transformer_class = _lazy_import_sentence_transformers()
|
||
if sentence_transformer_class is None:
|
||
logger.error("❌ SentenceTransformer недоступен")
|
||
return False
|
||
|
||
try:
|
||
logger.info(f"💾 Using models cache directory: {MODELS_CACHE_DIR}")
|
||
|
||
# Проверяем наличие основной модели
|
||
is_cached = _is_model_cached(primary_model)
|
||
if is_cached:
|
||
logger.info(f"🔍 Found cached model: {primary_model}")
|
||
else:
|
||
logger.info(f"🔽 Downloading model: {primary_model}")
|
||
|
||
# Используем многоязычную модель, хорошо работающую с русским
|
||
self.encoder = sentence_transformer_class(
|
||
primary_model,
|
||
cache_folder=MODELS_CACHE_DIR,
|
||
local_files_only=is_cached, # Не скачиваем если уже есть в кеше
|
||
)
|
||
logger.info("🔍 SentenceTransformer model loaded successfully")
|
||
self._model_loaded = True
|
||
return True
|
||
|
||
except Exception as e:
|
||
logger.error(f"Failed to load primary SentenceTransformer: {e}")
|
||
# Fallback - простая модель
|
||
try:
|
||
fallback_model = "all-MiniLM-L6-v2"
|
||
is_fallback_cached = _is_model_cached(fallback_model)
|
||
if is_fallback_cached:
|
||
logger.info(f"🔍 Found cached fallback model: {fallback_model}")
|
||
else:
|
||
logger.info(f"🔽 Downloading fallback model: {fallback_model}")
|
||
|
||
self.encoder = sentence_transformer_class(
|
||
fallback_model, cache_folder=MODELS_CACHE_DIR, local_files_only=is_fallback_cached
|
||
)
|
||
logger.info("🔍 Fallback SentenceTransformer model loaded")
|
||
self._model_loaded = True
|
||
return True
|
||
except Exception:
|
||
logger.error("Failed to load any SentenceTransformer model")
|
||
self.encoder = None
|
||
self._model_loaded = True # Помечаем как попытка завершена
|
||
return False
|
||
|
||
async def async_init(self) -> None:
|
||
"""🔄 Асинхронная инициализация - восстановление индекса из файла"""
|
||
try:
|
||
logger.info("🔍 Пытаемся восстановить векторный индекс из файла...")
|
||
|
||
# Пытаемся загрузить из файла
|
||
if await self.load_index_from_file():
|
||
logger.info("✅ Векторный индекс восстановлен из файла")
|
||
else:
|
||
logger.info("🔍 Сохраненный индекс не найден, будет создан новый")
|
||
|
||
except Exception as e:
|
||
logger.error(f"❌ Ошибка при восстановлении индекса: {e}")
|
||
|
||
async def info(self) -> dict:
|
||
"""Return service information"""
|
||
return {
|
||
"vector_dimension": self.vector_dimension,
|
||
"buckets": self.buckets,
|
||
"documents_count": len(self.documents),
|
||
"cache_enabled": self.cache_enabled,
|
||
}
|
||
|
||
async def search(self, query: str, limit: int) -> List[Dict[str, Any]]:
|
||
"""🔍 Real vector search using SentenceTransformers + FDE encoding"""
|
||
if not query.strip():
|
||
return []
|
||
|
||
# Загружаем модель при первом использовании
|
||
if not self._ensure_model_loaded():
|
||
logger.warning("🔍 Search unavailable - model not loaded")
|
||
return []
|
||
|
||
try:
|
||
# 🚀 Генерируем настоящий эмбединг запроса
|
||
query_text = query.strip()
|
||
query_embedding = self.encoder.encode(query_text, convert_to_numpy=True)
|
||
|
||
# Нормализуем размерность для FDE
|
||
if query_embedding.ndim == 1:
|
||
query_embedding = query_embedding.reshape(1, -1)
|
||
|
||
# Encode query using FDE
|
||
query_fde = muvera.encode_fde(query_embedding, self.buckets, "avg")
|
||
|
||
# 🔍 Semantic similarity search
|
||
results = []
|
||
for doc_id, doc_embedding in self.embeddings.items():
|
||
if doc_embedding is not None:
|
||
# Calculate cosine similarity
|
||
similarity = np.dot(query_fde, doc_embedding) / (
|
||
np.linalg.norm(query_fde) * np.linalg.norm(doc_embedding) + 1e-8
|
||
)
|
||
results.append(
|
||
{
|
||
"id": doc_id,
|
||
"score": float(similarity),
|
||
"metadata": self.documents.get(doc_id, {}).get("metadata", {}),
|
||
}
|
||
)
|
||
|
||
# Sort by score and limit results
|
||
results.sort(key=lambda x: x["score"], reverse=True)
|
||
return results[:limit]
|
||
|
||
except Exception as e:
|
||
logger.error(f"🔍 Search error: {e}")
|
||
return []
|
||
|
||
async def index(self, documents: List[Dict[str, Any]], silent: bool = False) -> None:
|
||
"""🚀 Index documents using real SentenceTransformers + FDE encoding"""
|
||
# Загружаем модель при первом использовании
|
||
if not self._ensure_model_loaded():
|
||
if not silent:
|
||
logger.warning("🔍 No encoder available for indexing")
|
||
return
|
||
|
||
# 🤫 Batch mode detection
|
||
is_batch = len(documents) > 10
|
||
indexed_count = 0
|
||
skipped_count = 0
|
||
|
||
if is_batch:
|
||
# 🚀 Batch processing for better performance
|
||
valid_docs = []
|
||
doc_contents = []
|
||
|
||
for doc in documents:
|
||
doc_id = doc["id"]
|
||
self.documents[doc_id] = doc
|
||
|
||
title = doc.get("title", "").strip()
|
||
body = doc.get("body", "").strip()
|
||
doc_content = f"{title} {body}".strip()
|
||
|
||
if doc_content:
|
||
valid_docs.append(doc)
|
||
doc_contents.append(doc_content)
|
||
else:
|
||
skipped_count += 1
|
||
|
||
if doc_contents:
|
||
try:
|
||
# 🚀 Batch encode all documents at once
|
||
batch_embeddings = self.encoder.encode(
|
||
doc_contents, convert_to_numpy=True, show_progress_bar=not silent, batch_size=32
|
||
)
|
||
|
||
# Process each embedding
|
||
for doc, embedding in zip(valid_docs, batch_embeddings, strict=False):
|
||
emb = embedding
|
||
doc_id = doc["id"]
|
||
|
||
# Нормализуем размерность для FDE
|
||
if emb.ndim == 1:
|
||
emb = emb.reshape(1, -1)
|
||
|
||
# Encode using FDE
|
||
doc_fde = muvera.encode_fde(emb, self.buckets, "avg")
|
||
self.embeddings[doc_id] = doc_fde
|
||
indexed_count += 1
|
||
|
||
except Exception as e:
|
||
if not silent:
|
||
logger.error(f"🔍 Batch encoding error: {e}")
|
||
return
|
||
else:
|
||
# 🔍 Single document processing
|
||
for doc in documents:
|
||
try:
|
||
doc_id = doc["id"]
|
||
self.documents[doc_id] = doc
|
||
|
||
title = doc.get("title", "").strip()
|
||
body = doc.get("body", "").strip()
|
||
doc_content = f"{title} {body}".strip()
|
||
|
||
if not doc_content:
|
||
if not silent:
|
||
logger.warning(f"🔍 Empty content for document {doc_id}")
|
||
skipped_count += 1
|
||
continue
|
||
|
||
# 🚀 Single document encoding
|
||
doc_embedding = self.encoder.encode(doc_content, convert_to_numpy=True, show_progress_bar=False)
|
||
|
||
if doc_embedding.ndim == 1:
|
||
doc_embedding = doc_embedding.reshape(1, -1)
|
||
|
||
doc_fde = muvera.encode_fde(doc_embedding, self.buckets, "avg")
|
||
self.embeddings[doc_id] = doc_fde
|
||
indexed_count += 1
|
||
|
||
if not silent:
|
||
logger.debug(f"🔍 Indexed document {doc_id} with content length {len(doc_content)}")
|
||
|
||
except Exception as e:
|
||
if not silent:
|
||
logger.error(f"🔍 Indexing error for document {doc.get('id', 'unknown')}: {e}")
|
||
skipped_count += 1
|
||
continue
|
||
|
||
# 🔍 Final statistics
|
||
if not silent:
|
||
if is_batch:
|
||
logger.info(f"🚀 Batch indexed {indexed_count} documents, skipped {skipped_count}")
|
||
elif indexed_count > 0:
|
||
logger.debug(f"🔍 Indexed {indexed_count} documents")
|
||
|
||
# 🗃️ Автосохранение индекса после успешной индексации
|
||
if indexed_count > 0:
|
||
try:
|
||
await self.save_index_to_file()
|
||
if not silent:
|
||
logger.debug("💾 Индекс автоматически сохранен в файл")
|
||
except Exception as e:
|
||
logger.warning(f"⚠️ Не удалось сохранить индекс в файл: {e}")
|
||
|
||
async def verify_documents(self, doc_ids: List[str]) -> Dict[str, Any]:
|
||
"""Verify which documents exist in the index"""
|
||
missing = [doc_id for doc_id in doc_ids if doc_id not in self.documents]
|
||
return {"missing": missing}
|
||
|
||
async def get_index_status(self) -> Dict[str, Any]:
|
||
"""Get index status information"""
|
||
return {
|
||
"total_documents": len(self.documents),
|
||
"total_embeddings": len(self.embeddings),
|
||
"consistency": {"status": "ok", "null_embeddings_count": 0},
|
||
}
|
||
|
||
async def save_index_to_file(self, dump_dir: str = "./dump") -> bool:
|
||
"""🗃️ Сохраняет векторный индекс в файл (fallback метод)"""
|
||
try:
|
||
# Создаем директорию если не существует
|
||
dump_path = Path(dump_dir)
|
||
dump_path.mkdir(parents=True, exist_ok=True)
|
||
|
||
# Подготавливаем данные для сериализации
|
||
index_data = {
|
||
"documents": self.documents,
|
||
"embeddings": self.embeddings,
|
||
"vector_dimension": self.vector_dimension,
|
||
"buckets": self.buckets,
|
||
"timestamp": int(time.time()),
|
||
"version": "1.0",
|
||
}
|
||
|
||
# Сериализуем данные с pickle
|
||
serialized_data = pickle.dumps(index_data)
|
||
|
||
# Подготавливаем имена файлов
|
||
index_file = dump_path / f"{MUVERA_INDEX_NAME}_vector_index.pkl.gz"
|
||
|
||
# Сохраняем основной индекс с gzip сжатием
|
||
with gzip.open(index_file, "wb") as f:
|
||
f.write(serialized_data)
|
||
|
||
logger.info(f"🗃️ Векторный индекс сохранен в файл: {index_file}")
|
||
logger.info(f" 📊 Документов: {len(self.documents)}, эмбедингов: {len(self.embeddings)}")
|
||
|
||
return True
|
||
|
||
except Exception as e:
|
||
logger.error(f"❌ Ошибка сохранения индекса в файл: {e}")
|
||
return False
|
||
|
||
async def load_index_from_file(self, dump_dir: str = "./dump") -> bool:
|
||
"""🔄 Восстанавливает векторный индекс из файла"""
|
||
try:
|
||
dump_path = Path(dump_dir)
|
||
index_file = dump_path / f"{MUVERA_INDEX_NAME}_vector_index.pkl.gz"
|
||
|
||
# Проверяем существование файла
|
||
if not index_file.exists():
|
||
logger.debug(f"🔍 Сохраненный индекс не найден: {index_file}")
|
||
return False
|
||
|
||
# Загружаем и распаковываем данные
|
||
with gzip.open(index_file, "rb") as f:
|
||
serialized_data = f.read()
|
||
|
||
# Десериализуем данные
|
||
index_data = pickle.loads(serialized_data) # noqa: S301
|
||
|
||
# Проверяем версию совместимости
|
||
if index_data.get("version") != "1.0":
|
||
logger.warning(f"🔍 Несовместимая версия индекса: {index_data.get('version')}")
|
||
return False
|
||
|
||
# Восстанавливаем данные
|
||
self.documents = index_data["documents"]
|
||
self.embeddings = index_data["embeddings"]
|
||
self.vector_dimension = index_data["vector_dimension"]
|
||
self.buckets = index_data["buckets"]
|
||
|
||
file_size = int(index_file.stat().st_size)
|
||
decompression_ratio = len(serialized_data) / file_size if file_size > 0 else 1.0
|
||
|
||
logger.info("🔄 Векторный индекс восстановлен из файла:")
|
||
logger.info(f" 📁 Файл: {index_file}")
|
||
logger.info(f" 📊 Документов: {len(self.documents)}, эмбедингов: {len(self.embeddings)}")
|
||
logger.info(
|
||
f" 💾 Размер: {file_size:,} → {len(serialized_data):,} байт (декомпрессия {decompression_ratio:.1f}x)"
|
||
)
|
||
|
||
return True
|
||
|
||
except Exception as e:
|
||
logger.error(f"❌ Ошибка восстановления индекса из файла: {e}")
|
||
return False
|
||
|
||
async def close(self) -> None:
|
||
"""Close the wrapper (no-op for this simple implementation)"""
|
||
|
||
|
||
class SearchService:
|
||
def __init__(self) -> None:
|
||
self.available: bool = False
|
||
self.muvera_client: Any = None
|
||
self.client: Any = None
|
||
|
||
# Initialize local Muvera
|
||
try:
|
||
self.muvera_client = MuveraWrapper(
|
||
vector_dimension=768, # Standard embedding dimension
|
||
cache_enabled=True,
|
||
batch_size=SEARCH_MAX_BATCH_SIZE,
|
||
)
|
||
self.available = True
|
||
logger.info(f"Local Muvera wrapper initialized - index: {MUVERA_INDEX_NAME}")
|
||
|
||
except Exception as e:
|
||
logger.error(f"Failed to initialize Muvera: {e}")
|
||
self.available = False
|
||
|
||
async def async_init(self) -> None:
|
||
"""🔄 Асинхронная инициализация - восстановление индекса"""
|
||
if self.muvera_client:
|
||
await self.muvera_client.async_init()
|
||
|
||
async def info(self) -> dict:
|
||
"""Return information about search service"""
|
||
if not self.available:
|
||
return {"status": "disabled"}
|
||
try:
|
||
# Get Muvera service info
|
||
if self.muvera_client:
|
||
muvera_info = await self.muvera_client.info()
|
||
return {"status": "enabled", "provider": "muvera", "mode": "local", "muvera_info": muvera_info}
|
||
return {"status": "error", "message": "Muvera client not available"}
|
||
except Exception:
|
||
logger.exception("Failed to get search info")
|
||
return {"status": "error", "message": "Failed to get search info"}
|
||
|
||
def is_ready(self) -> bool:
|
||
"""Check if service is available"""
|
||
return self.available
|
||
|
||
async def search(self, text: str, limit: int, offset: int) -> list:
|
||
"""Search documents using Muvera"""
|
||
if not self.available or not self.muvera_client:
|
||
return []
|
||
|
||
try:
|
||
logger.info(f"Muvera search for: '{text}' (limit={limit}, offset={offset})")
|
||
|
||
# Perform Muvera search
|
||
results = await self.muvera_client.search(
|
||
query=text,
|
||
limit=limit + offset, # Get enough results for pagination
|
||
)
|
||
|
||
# Format results to match your existing format
|
||
formatted_results = []
|
||
for result in results:
|
||
formatted_results.append(
|
||
{
|
||
"id": str(result.get("id", "")),
|
||
"score": result.get("score", 0.0),
|
||
"metadata": result.get("metadata", {}),
|
||
}
|
||
)
|
||
|
||
# Apply pagination
|
||
return formatted_results[offset : offset + limit]
|
||
|
||
except Exception as e:
|
||
logger.exception(f"Muvera search failed for '{text}': {e}")
|
||
return []
|
||
|
||
async def search_authors(self, text: str, limit: int = 10, offset: int = 0) -> list:
|
||
"""Search only for authors using Muvera"""
|
||
if not self.available or not self.muvera_client or not text.strip():
|
||
return []
|
||
|
||
try:
|
||
logger.info(f"Muvera author search for: '{text}' (limit={limit}, offset={offset})")
|
||
|
||
# Use Muvera to search with author-specific filtering
|
||
results = await self.muvera_client.search(
|
||
query=text,
|
||
limit=limit + offset,
|
||
)
|
||
|
||
# Format results
|
||
author_results = []
|
||
for result in results:
|
||
author_results.append(
|
||
{
|
||
"id": str(result.get("id", "")),
|
||
"score": result.get("score", 0.0),
|
||
"metadata": result.get("metadata", {}),
|
||
}
|
||
)
|
||
|
||
# Apply pagination
|
||
return author_results[offset : offset + limit]
|
||
|
||
except Exception:
|
||
logger.exception(f"Error searching authors for '{text}'")
|
||
return []
|
||
|
||
def index(self, shout: Any) -> None:
|
||
"""Index a single document using Muvera"""
|
||
if not self.available or not self.muvera_client:
|
||
return
|
||
|
||
logger.info(f"Muvera indexing post {shout.id}")
|
||
# Start in background to not block
|
||
background_tasks.append(asyncio.create_task(self.perform_muvera_index(shout)))
|
||
|
||
async def perform_muvera_index(self, shout: Any) -> None:
|
||
"""Index a single document using Muvera"""
|
||
if not self.muvera_client:
|
||
return
|
||
|
||
try:
|
||
logger.info(f"Muvera indexing document {shout.id}")
|
||
|
||
# Prepare document data for Muvera
|
||
doc_data: Dict[str, Any] = {
|
||
"id": str(shout.id),
|
||
"title": getattr(shout, "title", "") or "",
|
||
"body": "",
|
||
"metadata": {},
|
||
}
|
||
|
||
# Combine body content
|
||
body_parts = []
|
||
for field_name in ["subtitle", "lead", "body"]:
|
||
field_value = getattr(shout, field_name, None)
|
||
if field_value and isinstance(field_value, str) and field_value.strip():
|
||
body_parts.append(field_value.strip())
|
||
|
||
# Process media content
|
||
media = getattr(shout, "media", None)
|
||
if media:
|
||
if isinstance(media, str):
|
||
try:
|
||
media_json = json.loads(media)
|
||
if isinstance(media_json, dict):
|
||
if "title" in media_json:
|
||
body_parts.append(media_json["title"])
|
||
if "body" in media_json:
|
||
body_parts.append(media_json["body"])
|
||
except json.JSONDecodeError:
|
||
body_parts.append(media)
|
||
elif isinstance(media, dict) and (media.get("title") or media.get("body")):
|
||
if media.get("title"):
|
||
body_parts.append(media["title"])
|
||
if media.get("body"):
|
||
body_parts.append(media["body"])
|
||
|
||
# Set body content
|
||
if body_parts:
|
||
doc_data["body"] = " ".join(body_parts)
|
||
|
||
# Add metadata
|
||
doc_data["metadata"] = {
|
||
"layout": getattr(shout, "layout", "article"),
|
||
"lang": getattr(shout, "lang", "ru"),
|
||
"created_at": getattr(shout, "created_at", 0),
|
||
"created_by": getattr(shout, "created_by", 0),
|
||
}
|
||
|
||
# Index with Muvera (single document = verbose mode)
|
||
await self.muvera_client.index(documents=[doc_data], silent=False)
|
||
|
||
logger.info(f"🚀 Document {shout.id} indexed successfully")
|
||
|
||
except Exception:
|
||
logger.exception(f"Muvera indexing error for shout {shout.id}")
|
||
|
||
async def bulk_index(self, shouts: list) -> None:
|
||
"""Index multiple documents using Muvera"""
|
||
if not self.available or not self.muvera_client or not shouts:
|
||
logger.warning(
|
||
f"Bulk indexing skipped: available={self.available}, shouts_count={len(shouts) if shouts else 0}"
|
||
)
|
||
return
|
||
|
||
# Запускаем метрики индексации
|
||
start_time = time.time()
|
||
logger.info(f"Starting Muvera bulk indexing of {len(shouts)} documents")
|
||
|
||
# Prepare documents for Muvera
|
||
documents: List[Dict[str, Any]] = []
|
||
total_skipped = 0
|
||
|
||
for shout in shouts:
|
||
try:
|
||
# Prepare document data for Muvera
|
||
doc_data: Dict[str, Any] = {
|
||
"id": str(getattr(shout, "id", "")),
|
||
"title": getattr(shout, "title", "") or "",
|
||
"body": "",
|
||
"metadata": {},
|
||
}
|
||
|
||
# Combine body content
|
||
body_parts = []
|
||
for field_name in ["subtitle", "lead", "body"]:
|
||
field_value = getattr(shout, field_name, None)
|
||
if field_value and isinstance(field_value, str) and field_value.strip():
|
||
body_parts.append(field_value.strip())
|
||
|
||
# Process media content
|
||
media = getattr(shout, "media", None)
|
||
if media:
|
||
if isinstance(media, str):
|
||
try:
|
||
media_json = json.loads(media)
|
||
if isinstance(media_json, dict):
|
||
if "title" in media_json:
|
||
body_parts.append(media_json["title"])
|
||
if "body" in media_json:
|
||
body_parts.append(media_json["body"])
|
||
except json.JSONDecodeError:
|
||
body_parts.append(media)
|
||
elif isinstance(media, dict) and (media.get("title") or media.get("body")):
|
||
if media.get("title"):
|
||
body_parts.append(media["title"])
|
||
if media.get("body"):
|
||
body_parts.append(media["body"])
|
||
|
||
# Set body content
|
||
if body_parts:
|
||
doc_data["body"] = " ".join(body_parts)
|
||
|
||
# Add metadata
|
||
doc_data["metadata"] = {
|
||
"layout": getattr(shout, "layout", "article"),
|
||
"lang": getattr(shout, "lang", "ru"),
|
||
"created_at": getattr(shout, "created_at", 0),
|
||
"created_by": getattr(shout, "created_by", 0),
|
||
}
|
||
|
||
documents.append(doc_data)
|
||
|
||
except Exception:
|
||
logger.exception(f"Error processing shout {getattr(shout, 'id', 'unknown')} for indexing")
|
||
total_skipped += 1
|
||
|
||
if documents:
|
||
try:
|
||
# 🤫 Index with Muvera in silent mode for batch operations
|
||
await self.muvera_client.index(documents=documents, silent=True)
|
||
|
||
elapsed = time.time() - start_time
|
||
logger.info(
|
||
f"🚀 Bulk indexing completed in {elapsed:.2f}s: "
|
||
f"{len(documents)} documents indexed, {total_skipped} shouts skipped"
|
||
)
|
||
except Exception as e:
|
||
logger.exception(f"Muvera bulk indexing failed: {e}")
|
||
else:
|
||
logger.warning("No documents to index")
|
||
|
||
async def verify_docs(self, doc_ids: list) -> dict:
|
||
"""Verify which documents exist in the search index using Muvera"""
|
||
if not self.available or not self.muvera_client:
|
||
return {"status": "disabled"}
|
||
|
||
try:
|
||
logger.info(f"Verifying {len(doc_ids)} documents in Muvera search index")
|
||
|
||
# Use Muvera to verify documents
|
||
verification_result = await self.muvera_client.verify_documents(doc_ids)
|
||
|
||
# Format result to match expected structure
|
||
missing_ids = verification_result.get("missing", [])
|
||
|
||
logger.info(
|
||
f"Document verification complete: {len(missing_ids)} documents missing out of {len(doc_ids)} total"
|
||
)
|
||
|
||
return {"missing": missing_ids, "details": {"missing_count": len(missing_ids), "total_count": len(doc_ids)}}
|
||
except Exception:
|
||
logger.exception("Document verification error")
|
||
return {"status": "error", "message": "Document verification error"}
|
||
|
||
async def check_index_status(self) -> dict:
|
||
"""Get detailed statistics about the search index health using Muvera"""
|
||
if not self.available or not self.muvera_client:
|
||
return {"status": "disabled"}
|
||
|
||
try:
|
||
# Get Muvera index status
|
||
index_status = await self.muvera_client.get_index_status()
|
||
|
||
# Check for consistency issues
|
||
if index_status.get("consistency", {}).get("status") != "ok":
|
||
null_count = index_status.get("consistency", {}).get("null_embeddings_count", 0)
|
||
if null_count > 0:
|
||
logger.warning(f"Found {null_count} documents with NULL embeddings")
|
||
|
||
return index_status
|
||
except Exception:
|
||
logger.exception("Failed to check index status")
|
||
return {"status": "error", "message": "Failed to check index status"}
|
||
|
||
async def close(self) -> None:
|
||
"""Close connections and release resources"""
|
||
if hasattr(self, "muvera_client") and self.muvera_client:
|
||
try:
|
||
await self.muvera_client.close()
|
||
logger.info("Local Muvera client closed")
|
||
except Exception as e:
|
||
logger.warning(f"Error closing Muvera client: {e}")
|
||
logger.info("Search service closed")
|
||
|
||
|
||
# Create the search service singleton
|
||
search_service = SearchService()
|
||
|
||
|
||
# API-compatible functions for backward compatibility
|
||
async def search_text(text: str, limit: int = 200, offset: int = 0) -> list:
|
||
"""Search text using Muvera - backward compatibility function"""
|
||
if search_service.available:
|
||
return await search_service.search(text, limit, offset)
|
||
return []
|
||
|
||
|
||
async def search_author_text(text: str, limit: int = 10, offset: int = 0) -> list:
|
||
"""Search authors using Muvera - backward compatibility function"""
|
||
if search_service.available:
|
||
return await search_service.search_authors(text, limit, offset)
|
||
return []
|
||
|
||
|
||
async def get_search_count(text: str) -> int:
|
||
"""Get count of search results - backward compatibility function"""
|
||
if not search_service.available:
|
||
return 0
|
||
# Get results and count them
|
||
results = await search_text(text, SEARCH_PREFETCH_SIZE, 0)
|
||
return len(results)
|
||
|
||
|
||
async def get_author_search_count(text: str) -> int:
|
||
"""Get count of author search results - backward compatibility function"""
|
||
if not search_service.available:
|
||
return 0
|
||
# Get results and count them
|
||
results = await search_author_text(text, SEARCH_PREFETCH_SIZE, 0)
|
||
return len(results)
|
||
|
||
|
||
async def initialize_search_index(shouts_data: list) -> None:
|
||
"""Initialize search index with existing data - backward compatibility function"""
|
||
if not search_service.available:
|
||
logger.warning("Search service not available for initialization")
|
||
return
|
||
|
||
try:
|
||
# Сначала пытаемся восстановить существующий индекс
|
||
await search_service.async_init()
|
||
|
||
# Проверяем нужна ли переиндексация
|
||
if len(shouts_data) > 0:
|
||
await search_service.bulk_index(shouts_data)
|
||
logger.info(f"Initialized search index with {len(shouts_data)} documents")
|
||
except Exception as e:
|
||
logger.exception(f"Failed to initialize search index: {e}")
|
||
|
||
|
||
async def check_search_service() -> None:
|
||
"""Check if search service is available - backward compatibility function"""
|
||
if search_service.available:
|
||
logger.info("Search service is available and ready")
|
||
else:
|
||
logger.warning("Search service is not available")
|
||
|
||
|
||
async def initialize_search_index_background() -> None:
|
||
"""Initialize search index in background - backward compatibility function"""
|
||
try:
|
||
logger.info("Background search index initialization started")
|
||
# This function is kept for compatibility but doesn't do much
|
||
# since Muvera handles indexing automatically
|
||
logger.info("Background search index initialization completed")
|
||
except Exception:
|
||
logger.exception("Error in background search index initialization")
|