refactor(search.py): moved initialization logic in search-txtai instance
All checks were successful
Deploy on push / deploy (push) Successful in 55s

This commit is contained in:
Stepan Vladovskiy 2025-03-24 19:47:02 -03:00
parent 316375bf18
commit 60a13a9097

View File

@ -193,113 +193,101 @@ class SearchService:
logger.info(f"Bulk indexing completed in {elapsed:.2f}s: {total_indexed} indexed, {total_skipped} skipped, {total_truncated} truncated, {total_retries} retries") logger.info(f"Bulk indexing completed in {elapsed:.2f}s: {total_indexed} indexed, {total_skipped} skipped, {total_truncated} truncated, {total_retries} retries")
async def _process_document_batches(self, documents, batch_size, size_category): async def _process_document_batches(self, documents, batch_size, size_category):
"""Process document batches with retry logic""" """Process document batches with retry logic"""
# Check for possible database corruption before starting # Check for possible database corruption before starting
db_error_count = 0 db_error_count = 0
for i in range(0, len(documents), batch_size): for i in range(0, len(documents), batch_size):
batch = documents[i:i+batch_size] batch = documents[i:i+batch_size]
batch_id = f"{size_category}-{i//batch_size + 1}" batch_id = f"{size_category}-{i//batch_size + 1}"
logger.info(f"Processing {size_category} batch {batch_id} of {len(batch)} documents") logger.info(f"Processing {size_category} batch {batch_id} of {len(batch)} documents")
retry_count = 0 retry_count = 0
max_retries = 3 max_retries = 3
success = False success = False
# Process with retries # Process with retries
while not success and retry_count < max_retries: while not success and retry_count < max_retries:
try: try:
if batch: if batch:
sample = batch[0] sample = batch[0]
logger.info(f"Sample document in batch {batch_id}: id={sample['id']}, text_length={len(sample['text'])}") logger.info(f"Sample document in batch {batch_id}: id={sample['id']}, text_length={len(sample['text'])}")
logger.info(f"Sending batch {batch_id} of {len(batch)} documents to search service (attempt {retry_count+1})") logger.info(f"Sending batch {batch_id} of {len(batch)} documents to search service (attempt {retry_count+1})")
response = await self.index_client.post( response = await self.index_client.post(
"/bulk-index", "/bulk-index",
json=batch, json=batch,
timeout=120.0 # Explicit longer timeout for large batches timeout=120.0 # Explicit longer timeout for large batches
) )
# Handle 422 validation errors - these won't be fixed by retrying # Handle 422 validation errors - these won't be fixed by retrying
if response.status_code == 422: if response.status_code == 422:
error_detail = response.json() error_detail = response.json()
truncated_error = self._truncate_error_detail(error_detail) truncated_error = self._truncate_error_detail(error_detail)
logger.error(f"Validation error from search service for batch {batch_id}: {truncated_error}") logger.error(f"Validation error from search service for batch {batch_id}: {truncated_error}")
break break
# Handle 500 server errors - these might be fixed by retrying with smaller batches # Handle 500 server errors - these might be fixed by retrying with smaller batches
elif response.status_code == 500: elif response.status_code == 500:
db_error_count += 1 db_error_count += 1
# If we've seen multiple 500s, check for DB corruption # If we've seen multiple 500s, log a critical error
if db_error_count >= 3: if db_error_count >= 3:
logger.warning("Multiple server errors detected, attempting to reset search service") logger.critical(f"Multiple server errors detected (500). The search service may need manual intervention. Stopping batch {batch_id} processing.")
reset_result = await self.reset_search_service() break
if reset_result["status"] == "reset":
logger.info("Search service has been reset, restarting batch processing") # Try again with exponential backoff
# Wait a moment for the service to stabilize if retry_count < max_retries - 1:
await asyncio.sleep(2) retry_count += 1
# Only retry current batch wait_time = (2 ** retry_count) + (random.random() * 0.5) # Exponential backoff with jitter
retry_count = 0 logger.warning(f"Server error for batch {batch_id}, retrying in {wait_time:.1f}s (attempt {retry_count+1}/{max_retries})")
await asyncio.sleep(wait_time)
continue continue
# Try again with exponential backoff # Final retry, split the batch
elif len(batch) > 1:
logger.warning(f"Splitting batch {batch_id} after repeated failures")
mid = len(batch) // 2
await self._process_single_batch(batch[:mid], f"{batch_id}-A")
await self._process_single_batch(batch[mid:], f"{batch_id}-B")
break
else:
# Can't split a single document
logger.error(f"Failed to index document {batch[0]['id']} after {max_retries} attempts")
break
# Normal success case
response.raise_for_status()
result = response.json()
logger.info(f"Batch {batch_id} indexed successfully: {result}")
success = True
db_error_count = 0 # Reset error counter on success
except Exception as e:
# Check if it looks like a database corruption error
error_str = str(e).lower()
if "duplicate key" in error_str or "unique constraint" in error_str or "nonetype" in error_str:
db_error_count += 1
if db_error_count >= 2:
logger.critical(f"Potential database corruption detected: {error_str}. The search service may need manual intervention. Stopping batch {batch_id} processing.")
break
if retry_count < max_retries - 1: if retry_count < max_retries - 1:
retry_count += 1 retry_count += 1
wait_time = (2 ** retry_count) + (random.random() * 0.5) # Exponential backoff with jitter wait_time = (2 ** retry_count) + (random.random() * 0.5)
logger.warning(f"Server error for batch {batch_id}, retrying in {wait_time:.1f}s (attempt {retry_count+1}/{max_retries})") logger.warning(f"Error for batch {batch_id}, retrying in {wait_time:.1f}s: {str(e)[:200]}")
await asyncio.sleep(wait_time) await asyncio.sleep(wait_time)
continue
# Final retry, split the batch
elif len(batch) > 1:
logger.warning(f"Splitting batch {batch_id} after repeated failures")
mid = len(batch) // 2
await self._process_single_batch(batch[:mid], f"{batch_id}-A")
await self._process_single_batch(batch[mid:], f"{batch_id}-B")
break
else: else:
# Can't split a single document # Last resort - try to split the batch
logger.error(f"Failed to index document {batch[0]['id']} after {max_retries} attempts") if len(batch) > 1:
logger.warning(f"Splitting batch {batch_id} after exception: {str(e)[:200]}")
mid = len(batch) // 2
await self._process_single_batch(batch[:mid], f"{batch_id}-A")
await self._process_single_batch(batch[mid:], f"{batch_id}-B")
else:
logger.error(f"Failed to index document {batch[0]['id']} after {max_retries} attempts: {e}")
break break
# Normal success case
response.raise_for_status()
result = response.json()
logger.info(f"Batch {batch_id} indexed successfully: {result}")
success = True
db_error_count = 0 # Reset error counter on success
except Exception as e:
# Check if it looks like a database corruption error
error_str = str(e).lower()
if "duplicate key" in error_str or "unique constraint" in error_str or "nonetype" in error_str:
db_error_count += 1
if db_error_count >= 2:
logger.warning(f"Database corruption detected: {error_str}")
reset_result = await self.reset_search_service()
if reset_result["status"] == "reset":
logger.info("Search service has been reset, restarting batch processing")
await asyncio.sleep(2)
retry_count = 0
continue
if retry_count < max_retries - 1:
retry_count += 1
wait_time = (2 ** retry_count) + (random.random() * 0.5)
logger.warning(f"Error for batch {batch_id}, retrying in {wait_time:.1f}s: {str(e)[:200]}")
await asyncio.sleep(wait_time)
else:
# Last resort - try to split the batch
if len(batch) > 1:
logger.warning(f"Splitting batch {batch_id} after exception: {str(e)[:200]}")
mid = len(batch) // 2
await self._process_single_batch(batch[:mid], f"{batch_id}-A")
await self._process_single_batch(batch[mid:], f"{batch_id}-B")
else:
logger.error(f"Failed to index document {batch[0]['id']} after {max_retries} attempts: {e}")
break
async def _process_single_batch(self, documents, batch_id): async def _process_single_batch(self, documents, batch_id):
"""Process a single batch with maximum reliability""" """Process a single batch with maximum reliability"""
try: try:
@ -349,23 +337,6 @@ class SearchService:
return truncated_detail return truncated_detail
async def reset_search_service(self):
"""Reset the search service to recover from database corruption"""
if not self.available:
logger.warning("Search not available, cannot reset")
return {"status": "disabled"}
try:
logger.warning("Resetting search service due to database corruption")
response = await self.client.post("/initialize")
response.raise_for_status()
result = response.json()
logger.info(f"Search service reset: {result}")
return {"status": "reset", "message": "Search index has been reset"}
except Exception as e:
logger.error(f"Failed to reset search service: {e}")
return {"status": "error", "message": str(e)}
async def search(self, text, limit, offset): async def search(self, text, limit, offset):
"""Search documents""" """Search documents"""
if not self.available: if not self.available: