This commit is contained in:
@@ -1,8 +1,11 @@
|
||||
import concurrent.futures
|
||||
from typing import Dict, Tuple, List
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
from txtai.embeddings import Embeddings
|
||||
|
||||
from services.logger import root_logger as logger
|
||||
|
||||
|
||||
class TopicClassifier:
|
||||
def __init__(self, shouts_by_topic: Dict[str, str], publications: List[Dict[str, str]]):
|
||||
"""
|
||||
@@ -32,27 +35,21 @@ class TopicClassifier:
|
||||
Подготавливает векторные представления для тем и поиска.
|
||||
"""
|
||||
logger.info("Начинается подготовка векторных представлений...")
|
||||
|
||||
|
||||
# Модель для русского языка
|
||||
# TODO: model local caching
|
||||
model_path = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
||||
|
||||
|
||||
# Инициализируем embeddings для классификации тем
|
||||
self.topic_embeddings = Embeddings(path=model_path)
|
||||
topic_documents = [
|
||||
(topic, text)
|
||||
for topic, text in self.shouts_by_topic.items()
|
||||
]
|
||||
topic_documents = [(topic, text) for topic, text in self.shouts_by_topic.items()]
|
||||
self.topic_embeddings.index(topic_documents)
|
||||
|
||||
|
||||
# Инициализируем embeddings для поиска публикаций
|
||||
self.search_embeddings = Embeddings(path=model_path)
|
||||
search_documents = [
|
||||
(str(pub['id']), f"{pub['title']} {pub['text']}")
|
||||
for pub in self.publications
|
||||
]
|
||||
search_documents = [(str(pub["id"]), f"{pub['title']} {pub['text']}") for pub in self.publications]
|
||||
self.search_embeddings.index(search_documents)
|
||||
|
||||
|
||||
logger.info("Подготовка векторных представлений завершена.")
|
||||
|
||||
def predict_topic(self, text: str) -> Tuple[float, str]:
|
||||
@@ -66,13 +63,13 @@ class TopicClassifier:
|
||||
if not self.is_ready():
|
||||
logger.error("Векторные представления не готовы. Вызовите initialize() и дождитесь завершения.")
|
||||
return 0.0, "unknown"
|
||||
|
||||
|
||||
try:
|
||||
# Ищем наиболее похожую тему
|
||||
results = self.topic_embeddings.search(text, 1)
|
||||
if not results:
|
||||
return 0.0, "unknown"
|
||||
|
||||
|
||||
score, topic = results[0]
|
||||
return float(score), topic
|
||||
|
||||
@@ -92,25 +89,19 @@ class TopicClassifier:
|
||||
if not self.is_ready():
|
||||
logger.error("Векторные представления не готовы. Вызовите initialize() и дождитесь завершения.")
|
||||
return []
|
||||
|
||||
|
||||
try:
|
||||
# Ищем похожие публикации
|
||||
results = self.search_embeddings.search(query, limit)
|
||||
|
||||
|
||||
# Формируем результаты
|
||||
found_publications = []
|
||||
for score, pub_id in results:
|
||||
# Находим публикацию по id
|
||||
publication = next(
|
||||
(pub for pub in self.publications if str(pub['id']) == pub_id),
|
||||
None
|
||||
)
|
||||
publication = next((pub for pub in self.publications if str(pub["id"]) == pub_id), None)
|
||||
if publication:
|
||||
found_publications.append({
|
||||
**publication,
|
||||
'relevance': float(score)
|
||||
})
|
||||
|
||||
found_publications.append({**publication, "relevance": float(score)})
|
||||
|
||||
return found_publications
|
||||
|
||||
except Exception as e:
|
||||
@@ -137,6 +128,7 @@ class TopicClassifier:
|
||||
if self._executor:
|
||||
self._executor.shutdown(wait=False)
|
||||
|
||||
|
||||
# Пример использования:
|
||||
"""
|
||||
shouts_by_topic = {
|
||||
@@ -176,4 +168,3 @@ for pub in similar_publications:
|
||||
print(f"Заголовок: {pub['title']}")
|
||||
print(f"Текст: {pub['text'][:100]}...")
|
||||
"""
|
||||
|
||||
|
Reference in New Issue
Block a user