feat(search.py): documnet for bulk indexing are categorized
All checks were successful
Deploy on push / deploy (push) Successful in 55s

This commit is contained in:
Stepan Vladovskiy 2025-03-21 15:40:29 -03:00
parent eb4b9363ab
commit 50a8c24ead

View File

@ -4,6 +4,7 @@ import logging
import os import os
import httpx import httpx
import time import time
import random
# Set up proper logging # Set up proper logging
logger = logging.getLogger("search") logger = logging.getLogger("search")
@ -11,7 +12,7 @@ logger.setLevel(logging.INFO) # Change to INFO to see more details
# Configuration for search service # Configuration for search service
SEARCH_ENABLED = bool(os.environ.get("SEARCH_ENABLED", "true").lower() in ["true", "1", "yes"]) SEARCH_ENABLED = bool(os.environ.get("SEARCH_ENABLED", "true").lower() in ["true", "1", "yes"])
TXTAI_SERVICE_URL = os.environ.get("TXTAI_SERVICE_URL", "http://search-txtai.web.1:8000") TXTAI_SERVICE_URL = os.environ.get("TXTAI_SERVICE_URL", "none")
MAX_BATCH_SIZE = int(os.environ.get("SEARCH_MAX_BATCH_SIZE", "25")) MAX_BATCH_SIZE = int(os.environ.get("SEARCH_MAX_BATCH_SIZE", "25"))
@ -87,7 +88,7 @@ class SearchService:
logger.error(f"Indexing error for shout {shout.id}: {e}") logger.error(f"Indexing error for shout {shout.id}: {e}")
async def bulk_index(self, shouts): async def bulk_index(self, shouts):
"""Index multiple documents at once""" """Index multiple documents at once with adaptive batch sizing"""
if not self.available or not shouts: if not self.available or not shouts:
logger.warning(f"Bulk indexing skipped: available={self.available}, shouts_count={len(shouts) if shouts else 0}") logger.warning(f"Bulk indexing skipped: available={self.available}, shouts_count={len(shouts) if shouts else 0}")
return return
@ -96,122 +97,227 @@ class SearchService:
logger.info(f"Starting bulk indexing of {len(shouts)} documents") logger.info(f"Starting bulk indexing of {len(shouts)} documents")
MAX_TEXT_LENGTH = 8000 # Maximum text length to send in a single request MAX_TEXT_LENGTH = 8000 # Maximum text length to send in a single request
batch_size = MAX_BATCH_SIZE max_batch_size = MAX_BATCH_SIZE
total_indexed = 0 total_indexed = 0
total_skipped = 0 total_skipped = 0
total_truncated = 0 total_truncated = 0
i = 0 total_retries = 0
for i in range(0, len(shouts), batch_size): # Group documents by size to process smaller documents in larger batches
batch = shouts[i:i+batch_size] small_docs = []
logger.info(f"Processing batch {i//batch_size + 1} of {(len(shouts)-1)//batch_size + 1}, size {len(batch)}") medium_docs = []
large_docs = []
documents = []
for shout in batch: # First pass: prepare all documents and categorize by size
try: for shout in shouts:
text_fields = []
for field_name in ['title', 'subtitle', 'lead', 'body']:
field_value = getattr(shout, field_name, None)
if field_value and isinstance(field_value, str) and field_value.strip():
text_fields.append(field_value.strip())
media = getattr(shout, 'media', None)
if media:
if isinstance(media, str):
try:
media_json = json.loads(media)
if isinstance(media_json, dict):
if 'title' in media_json:
text_fields.append(media_json['title'])
if 'body' in media_json:
text_fields.append(media_json['body'])
except json.JSONDecodeError:
text_fields.append(media)
elif isinstance(media, dict):
if 'title' in media:
text_fields.append(media['title'])
if 'body' in media:
text_fields.append(media['body'])
text = " ".join(text_fields)
if not text.strip():
logger.debug(f"Skipping shout {shout.id}: no text content")
total_skipped += 1
continue
# Truncate text if it exceeds the maximum length
original_length = len(text)
if original_length > MAX_TEXT_LENGTH:
text = text[:MAX_TEXT_LENGTH]
logger.info(f"Truncated document {shout.id} from {original_length} to {MAX_TEXT_LENGTH} chars")
total_truncated += 1
documents.append({
"id": str(shout.id),
"text": text
})
total_indexed += 1
except Exception as e:
logger.error(f"Error processing shout {getattr(shout, 'id', 'unknown')} for indexing: {e}")
total_skipped += 1
if not documents:
logger.warning(f"No valid documents in batch {i//batch_size + 1}")
continue
try: try:
if documents: text_fields = []
sample = documents[0] for field_name in ['title', 'subtitle', 'lead', 'body']:
logger.info(f"Sample document: id={sample['id']}, text_length={len(sample['text'])}") field_value = getattr(shout, field_name, None)
if field_value and isinstance(field_value, str) and field_value.strip():
text_fields.append(field_value.strip())
logger.info(f"Sending batch of {len(documents)} documents to search service") # Media field processing remains the same
response = await self.index_client.post( media = getattr(shout, 'media', None)
"/bulk-index", if media:
json=documents # Your existing media processing logic
) if isinstance(media, str):
# Error Handling try:
if response.status_code == 422: media_json = json.loads(media)
error_detail = response.json() if isinstance(media_json, dict):
if 'title' in media_json:
# Create a truncated version of the error detail for logging text_fields.append(media_json['title'])
truncated_detail = error_detail.copy() if isinstance(error_detail, dict) else error_detail if 'body' in media_json:
text_fields.append(media_json['body'])
# If it's a validation error with details list except json.JSONDecodeError:
if isinstance(truncated_detail, dict) and 'detail' in truncated_detail and isinstance(truncated_detail['detail'], list): text_fields.append(media)
for i, item in enumerate(truncated_detail['detail']): elif isinstance(media, dict):
# Handle case where input contains document text if 'title' in media:
if isinstance(item, dict) and 'input' in item: text_fields.append(media['title'])
if isinstance(item['input'], dict) and any(k in item['input'] for k in ['documents', 'text']): if 'body' in media:
# Check for documents list text_fields.append(media['body'])
if 'documents' in item['input'] and isinstance(item['input']['documents'], list):
for j, doc in enumerate(item['input']['documents']): text = " ".join(text_fields)
if 'text' in doc and isinstance(doc['text'], str) and len(doc['text']) > 100:
item['input']['documents'][j]['text'] = f"{doc['text'][:100]}... [truncated, total {len(doc['text'])} chars]" if not text.strip():
logger.debug(f"Skipping shout {shout.id}: no text content")
# Check for direct text field total_skipped += 1
if 'text' in item['input'] and isinstance(item['input']['text'], str) and len(item['input']['text']) > 100:
item['input']['text'] = f"{item['input']['text'][:100]}... [truncated, total {len(item['input']['text'])} chars]"
logger.error(f"Validation error from search service: {truncated_detail}")
# Try to identify problematic documents
for doc in documents:
if len(doc['text']) > 10000: # Adjust threshold as needed
logger.warning(f"Document {doc['id']} has very long text: {len(doc['text'])} chars")
# Continue with next batch instead of failing completely
continue continue
response.raise_for_status() # Truncate text if it exceeds the maximum length
result = response.json() original_length = len(text)
logger.info(f"Batch {i//batch_size + 1} indexed successfully: {result}") if original_length > MAX_TEXT_LENGTH:
text = text[:MAX_TEXT_LENGTH]
logger.info(f"Truncated document {shout.id} from {original_length} to {MAX_TEXT_LENGTH} chars")
total_truncated += 1
document = {
"id": str(shout.id),
"text": text
}
# Categorize by size
text_len = len(text)
if text_len > 5000:
large_docs.append(document)
elif text_len > 2000:
medium_docs.append(document)
else:
small_docs.append(document)
total_indexed += 1
except Exception as e: except Exception as e:
logger.error(f"Bulk indexing error for batch {i//batch_size + 1}: {e}") logger.error(f"Error processing shout {getattr(shout, 'id', 'unknown')} for indexing: {e}")
total_skipped += 1
# Process each category with appropriate batch sizes
logger.info(f"Documents categorized: {len(small_docs)} small, {len(medium_docs)} medium, {len(large_docs)} large")
# Process small documents (larger batches)
if small_docs:
batch_size = min(max_batch_size, 25)
await self._process_document_batches(small_docs, batch_size, "small")
# Process medium documents (medium batches)
if medium_docs:
batch_size = min(max_batch_size, 15)
await self._process_document_batches(medium_docs, batch_size, "medium")
# Process large documents (small batches)
if large_docs:
batch_size = min(max_batch_size, 5)
await self._process_document_batches(large_docs, batch_size, "large")
elapsed = time.time() - start_time elapsed = time.time() - start_time
logger.info(f"Bulk indexing completed in {elapsed:.2f}s: {total_indexed} indexed, {total_skipped} skipped") logger.info(f"Bulk indexing completed in {elapsed:.2f}s: {total_indexed} indexed, {total_skipped} skipped, {total_truncated} truncated, {total_retries} retries")
async def _process_document_batches(self, documents, batch_size, size_category):
"""Process document batches with retry logic"""
for i in range(0, len(documents), batch_size):
batch = documents[i:i+batch_size]
batch_id = f"{size_category}-{i//batch_size + 1}"
logger.info(f"Processing {size_category} batch {batch_id} of {len(batch)} documents")
retry_count = 0
max_retries = 3
success = False
# Process with retries
while not success and retry_count < max_retries:
try:
if batch:
sample = batch[0]
logger.info(f"Sample document in batch {batch_id}: id={sample['id']}, text_length={len(sample['text'])}")
logger.info(f"Sending batch {batch_id} of {len(batch)} documents to search service (attempt {retry_count+1})")
response = await self.index_client.post(
"/bulk-index",
json=batch,
timeout=120.0 # Explicit longer timeout for large batches
)
# Handle 422 validation errors - these won't be fixed by retrying
if response.status_code == 422:
error_detail = response.json()
truncated_error = self._truncate_error_detail(error_detail)
logger.error(f"Validation error from search service for batch {batch_id}: {truncated_error}")
# Individual document validation often won't benefit from splitting
break
# Handle 500 server errors - these might be fixed by retrying with smaller batches
elif response.status_code == 500:
if retry_count < max_retries - 1:
retry_count += 1
wait_time = (2 ** retry_count) + (random.random() * 0.5) # Exponential backoff with jitter
logger.warning(f"Server error for batch {batch_id}, retrying in {wait_time:.1f}s (attempt {retry_count+1}/{max_retries})")
await asyncio.sleep(wait_time)
continue
# Final retry, split the batch
elif len(batch) > 1:
logger.warning(f"Splitting batch {batch_id} after repeated failures")
mid = len(batch) // 2
await self._process_single_batch(batch[:mid], f"{batch_id}-A")
await self._process_single_batch(batch[mid:], f"{batch_id}-B")
break
else:
# Can't split a single document
logger.error(f"Failed to index document {batch[0]['id']} after {max_retries} attempts")
break
# Normal success case
response.raise_for_status()
result = response.json()
logger.info(f"Batch {batch_id} indexed successfully: {result}")
success = True
except Exception as e:
if retry_count < max_retries - 1:
retry_count += 1
wait_time = (2 ** retry_count) + (random.random() * 0.5)
logger.warning(f"Error for batch {batch_id}, retrying in {wait_time:.1f}s: {str(e)[:200]}")
await asyncio.sleep(wait_time)
else:
# Last resort - try to split the batch
if len(batch) > 1:
logger.warning(f"Splitting batch {batch_id} after exception: {str(e)[:200]}")
mid = len(batch) // 2
await self._process_single_batch(batch[:mid], f"{batch_id}-A")
await self._process_single_batch(batch[mid:], f"{batch_id}-B")
else:
logger.error(f"Failed to index document {batch[0]['id']} after {max_retries} attempts: {e}")
break
async def _process_single_batch(self, documents, batch_id):
"""Process a single batch with maximum reliability"""
try:
if not documents:
return
logger.info(f"Processing sub-batch {batch_id} with {len(documents)} documents")
response = await self.index_client.post(
"/bulk-index",
json=documents,
timeout=90.0
)
response.raise_for_status()
result = response.json()
logger.info(f"Sub-batch {batch_id} indexed successfully: {result}")
except Exception as e:
logger.error(f"Error indexing sub-batch {batch_id}: {str(e)[:200]}")
# For tiny batches, try one-by-one as last resort
if len(documents) > 1:
logger.info(f"Processing documents in sub-batch {batch_id} individually")
for i, doc in enumerate(documents):
try:
resp = await self.index_client.post("/index", json=doc, timeout=30.0)
resp.raise_for_status()
logger.info(f"Indexed document {doc['id']} individually")
except Exception as e2:
logger.error(f"Failed to index document {doc['id']} individually: {str(e2)[:100]}")
def _truncate_error_detail(self, error_detail):
"""Truncate error details for logging"""
truncated_detail = error_detail.copy() if isinstance(error_detail, dict) else error_detail
if isinstance(truncated_detail, dict) and 'detail' in truncated_detail and isinstance(truncated_detail['detail'], list):
for i, item in enumerate(truncated_detail['detail']):
if isinstance(item, dict) and 'input' in item:
if isinstance(item['input'], dict) and any(k in item['input'] for k in ['documents', 'text']):
# Check for documents list
if 'documents' in item['input'] and isinstance(item['input']['documents'], list):
for j, doc in enumerate(item['input']['documents']):
if 'text' in doc and isinstance(doc['text'], str) and len(doc['text']) > 100:
item['input']['documents'][j]['text'] = f"{doc['text'][:100]}... [truncated, total {len(doc['text'])} chars]"
# Check for direct text field
if 'text' in item['input'] and isinstance(item['input']['text'], str) and len(item['input']['text']) > 100:
item['input']['text'] = f"{item['input']['text'][:100]}... [truncated, total {len(item['input']['text'])} chars]"
return truncated_detail
async def search(self, text, limit, offset): async def search(self, text, limit, offset):
"""Search documents""" """Search documents"""