core/services/search.py

935 lines
35 KiB
Python
Raw Normal View History

2024-02-29 11:04:24 +00:00
import asyncio
2022-11-17 19:53:58 +00:00
import json
2024-06-02 13:36:12 +00:00
import logging
2024-06-02 14:01:22 +00:00
import os
import httpx
import time
import random
from collections import defaultdict
from datetime import datetime, timedelta
2023-12-17 20:30:20 +00:00
# Set up proper logging
2024-06-02 13:36:12 +00:00
logger = logging.getLogger("search")
logger.setLevel(logging.INFO) # Change to INFO to see more details
# Disable noise HTTP client logging
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("httpcore").setLevel(logging.WARNING)
2024-06-02 13:36:12 +00:00
# Configuration for search service
SEARCH_ENABLED = bool(
os.environ.get("SEARCH_ENABLED", "true").lower() in ["true", "1", "yes"]
)
TXTAI_SERVICE_URL = os.environ.get("TXTAI_SERVICE_URL", "none")
MAX_BATCH_SIZE = int(os.environ.get("SEARCH_MAX_BATCH_SIZE", "25"))
2024-05-18 08:52:17 +00:00
# Search cache configuration
SEARCH_CACHE_ENABLED = bool(
os.environ.get("SEARCH_CACHE_ENABLED", "true").lower() in ["true", "1", "yes"]
)
SEARCH_CACHE_TTL_SECONDS = int(
os.environ.get("SEARCH_CACHE_TTL_SECONDS", "300")
) # Default: 15 minutes
SEARCH_PREFETCH_SIZE = int(os.environ.get("SEARCH_PREFETCH_SIZE", "200"))
SEARCH_USE_REDIS = bool(
os.environ.get("SEARCH_USE_REDIS", "true").lower() in ["true", "1", "yes"]
)
search_offset = 0
# Import Redis client if Redis caching is enabled
if SEARCH_USE_REDIS:
try:
from services.redis import redis
logger.info("Redis client imported for search caching")
except ImportError:
logger.warning("Redis client import failed, falling back to memory cache")
SEARCH_USE_REDIS = False
class SearchCache:
"""Cache for search results to enable efficient pagination"""
def __init__(self, ttl_seconds=SEARCH_CACHE_TTL_SECONDS, max_items=100):
self.cache = {} # Maps search query to list of results
self.last_accessed = {} # Maps search query to last access timestamp
self.ttl = ttl_seconds
self.max_items = max_items
self._redis_prefix = "search_cache:"
async def store(self, query, results):
"""Store search results for a query"""
normalized_query = self._normalize_query(query)
if SEARCH_USE_REDIS:
try:
serialized_results = json.dumps(results)
await redis.set(
f"{self._redis_prefix}{normalized_query}",
serialized_results,
ex=self.ttl,
)
logger.info(
f"Stored {len(results)} search results for query '{query}' in Redis"
)
return True
except Exception as e:
logger.error(f"Error storing search results in Redis: {e}")
# Fall back to memory cache if Redis fails
# First cleanup if needed for memory cache
if len(self.cache) >= self.max_items:
self._cleanup()
# Store results and update timestamp
self.cache[normalized_query] = results
self.last_accessed[normalized_query] = time.time()
logger.info(
f"Cached {len(results)} search results for query '{query}' in memory"
)
return True
async def get(self, query, limit=10, offset=0):
"""Get paginated results for a query"""
normalized_query = self._normalize_query(query)
all_results = None
# Try to get from Redis first
if SEARCH_USE_REDIS:
try:
cached_data = await redis.get(f"{self._redis_prefix}{normalized_query}")
if cached_data:
all_results = json.loads(cached_data)
logger.info(f"Retrieved search results for '{query}' from Redis")
except Exception as e:
logger.error(f"Error retrieving search results from Redis: {e}")
# Fall back to memory cache if not in Redis
if all_results is None and normalized_query in self.cache:
all_results = self.cache[normalized_query]
self.last_accessed[normalized_query] = time.time()
logger.info(f"Retrieved search results for '{query}' from memory cache")
# If not found in any cache
if all_results is None:
2025-04-07 14:41:48 +00:00
logger.info(f"Cache miss for query '{query}'")
return None
# Return paginated subset
end_idx = min(offset + limit, len(all_results))
if offset >= len(all_results):
logger.warning(
f"Requested offset {offset} exceeds result count {len(all_results)}"
)
return []
logger.info(
f"Cache hit for '{query}': serving {offset}:{end_idx} of {len(all_results)} results"
)
return all_results[offset:end_idx]
async def has_query(self, query):
"""Check if query exists in cache"""
normalized_query = self._normalize_query(query)
# Check Redis first
if SEARCH_USE_REDIS:
try:
exists = await redis.get(f"{self._redis_prefix}{normalized_query}")
if exists:
return True
except Exception as e:
logger.error(f"Error checking Redis for query existence: {e}")
# Fall back to memory cache
return normalized_query in self.cache
async def get_total_count(self, query):
"""Get total count of results for a query"""
normalized_query = self._normalize_query(query)
# Check Redis first
if SEARCH_USE_REDIS:
try:
cached_data = await redis.get(f"{self._redis_prefix}{normalized_query}")
if cached_data:
all_results = json.loads(cached_data)
return len(all_results)
except Exception as e:
logger.error(f"Error getting result count from Redis: {e}")
# Fall back to memory cache
if normalized_query in self.cache:
return len(self.cache[normalized_query])
return 0
def _normalize_query(self, query):
"""Normalize query string for cache key"""
if not query:
return ""
# Simple normalization - lowercase and strip whitespace
return query.lower().strip()
def _cleanup(self):
"""Remove oldest entries if memory cache is full"""
now = time.time()
# First remove expired entries
expired_keys = [
key
for key, last_access in self.last_accessed.items()
if now - last_access > self.ttl
]
for key in expired_keys:
if key in self.cache:
del self.cache[key]
if key in self.last_accessed:
del self.last_accessed[key]
logger.info(f"Cleaned up {len(expired_keys)} expired search cache entries")
# If still above max size, remove oldest entries
if len(self.cache) >= self.max_items:
# Sort by last access time
sorted_items = sorted(self.last_accessed.items(), key=lambda x: x[1])
# Remove oldest 20%
remove_count = max(1, int(len(sorted_items) * 0.2))
for key, _ in sorted_items[:remove_count]:
if key in self.cache:
del self.cache[key]
if key in self.last_accessed:
del self.last_accessed[key]
logger.info(f"Removed {remove_count} oldest search cache entries")
2024-02-29 11:09:50 +00:00
2024-01-29 01:09:54 +00:00
class SearchService:
def __init__(self):
logger.info(f"Initializing search service with URL: {TXTAI_SERVICE_URL}")
self.available = SEARCH_ENABLED
# Use different timeout settings for indexing and search requests
self.client = httpx.AsyncClient(timeout=30.0, base_url=TXTAI_SERVICE_URL)
self.index_client = httpx.AsyncClient(timeout=120.0, base_url=TXTAI_SERVICE_URL)
# Initialize search cache
self.cache = SearchCache() if SEARCH_CACHE_ENABLED else None
if not self.available:
logger.info("Search disabled (SEARCH_ENABLED = False)")
if SEARCH_CACHE_ENABLED:
cache_location = "Redis" if SEARCH_USE_REDIS else "Memory"
logger.info(
f"Search caching enabled using {cache_location} cache with TTL={SEARCH_CACHE_TTL_SECONDS}s"
)
2024-05-18 08:22:13 +00:00
async def info(self):
"""Return information about search service"""
if not self.available:
2024-11-22 17:32:14 +00:00
return {"status": "disabled"}
2024-11-22 17:23:45 +00:00
try:
response = await self.client.get("/info")
response.raise_for_status()
result = response.json()
logger.info(f"Search service info: {result}")
return result
2024-11-22 17:32:14 +00:00
except Exception as e:
logger.error(f"Failed to get search info: {e}")
return {"status": "error", "message": str(e)}
def is_ready(self):
"""Check if service is available"""
return self.available
async def verify_docs(self, doc_ids):
"""Verify which documents exist in the search index across all content types"""
if not self.available:
return {"status": "disabled"}
try:
logger.info(f"Verifying {len(doc_ids)} documents in search index")
response = await self.client.post(
"/verify-docs",
json={"doc_ids": doc_ids},
timeout=60.0, # Longer timeout for potentially large ID lists
)
response.raise_for_status()
result = response.json()
# Process the more detailed response format
bodies_missing = set(result.get("bodies", {}).get("missing", []))
titles_missing = set(result.get("titles", {}).get("missing", []))
# Combine missing IDs from both bodies and titles
# A document is considered missing if it's missing from either index
all_missing = list(bodies_missing.union(titles_missing))
# Log summary of verification results
bodies_missing_count = len(bodies_missing)
titles_missing_count = len(titles_missing)
total_missing_count = len(all_missing)
logger.info(
f"Document verification complete: {bodies_missing_count} bodies missing, {titles_missing_count} titles missing"
)
logger.info(
f"Total unique missing documents: {total_missing_count} out of {len(doc_ids)} total"
)
# Return in a backwards-compatible format plus the detailed breakdown
return {
"missing": all_missing,
"details": {
"bodies_missing": list(bodies_missing),
"titles_missing": list(titles_missing),
"bodies_missing_count": bodies_missing_count,
"titles_missing_count": titles_missing_count,
},
}
except Exception as e:
logger.error(f"Document verification error: {e}")
return {"status": "error", "message": str(e)}
2024-01-29 03:42:02 +00:00
def index(self, shout):
"""Index a single document"""
if not self.available:
2024-11-22 17:32:14 +00:00
return
logger.info(f"Indexing post {shout.id}")
# Start in background to not block
asyncio.create_task(self.perform_index(shout))
async def perform_index(self, shout):
"""Index a single document across multiple endpoints"""
if not self.available:
return
try:
logger.info(f"Indexing document {shout.id} to individual endpoints")
indexing_tasks = []
# 1. Index title if available
if hasattr(shout, "title") and shout.title and isinstance(shout.title, str):
title_doc = {"id": str(shout.id), "title": shout.title.strip()}
indexing_tasks.append(
self.index_client.post("/index-title", json=title_doc)
)
# 2. Index body content (subtitle, lead, body)
body_text_parts = []
for field_name in ["subtitle", "lead", "body"]:
field_value = getattr(shout, field_name, None)
if field_value and isinstance(field_value, str) and field_value.strip():
body_text_parts.append(field_value.strip())
# Process media content if available
media = getattr(shout, "media", None)
if media:
if isinstance(media, str):
try:
media_json = json.loads(media)
if isinstance(media_json, dict):
if "title" in media_json:
body_text_parts.append(media_json["title"])
if "body" in media_json:
body_text_parts.append(media_json["body"])
except json.JSONDecodeError:
body_text_parts.append(media)
elif isinstance(media, dict):
if "title" in media:
body_text_parts.append(media["title"])
if "body" in media:
body_text_parts.append(media["body"])
if body_text_parts:
body_text = " ".join(body_text_parts)
# Truncate if too long
MAX_TEXT_LENGTH = 4000
if len(body_text) > MAX_TEXT_LENGTH:
body_text = body_text[:MAX_TEXT_LENGTH]
body_doc = {"id": str(shout.id), "body": body_text}
indexing_tasks.append(
self.index_client.post("/index-body", json=body_doc)
)
# 3. Index authors
authors = getattr(shout, "authors", [])
for author in authors:
author_id = str(getattr(author, "id", 0))
if not author_id or author_id == "0":
continue
name = getattr(author, "name", "")
# Combine bio and about fields
bio_parts = []
bio = getattr(author, "bio", "")
if bio and isinstance(bio, str):
bio_parts.append(bio.strip())
about = getattr(author, "about", "")
if about and isinstance(about, str):
bio_parts.append(about.strip())
combined_bio = " ".join(bio_parts)
if name:
author_doc = {"id": author_id, "name": name, "bio": combined_bio}
indexing_tasks.append(
self.index_client.post("/index-author", json=author_doc)
)
# Run all indexing tasks in parallel
if indexing_tasks:
responses = await asyncio.gather(
*indexing_tasks, return_exceptions=True
)
# Check for errors in responses
for i, response in enumerate(responses):
if isinstance(response, Exception):
logger.error(f"Error in indexing task {i}: {response}")
elif (
hasattr(response, "status_code") and response.status_code >= 400
):
logger.error(
f"Error response in indexing task {i}: {response.status_code}, {await response.text()}"
)
logger.info(
f"Document {shout.id} indexed across {len(indexing_tasks)} endpoints"
)
else:
logger.warning(f"No content to index for shout {shout.id}")
except Exception as e:
logger.error(f"Indexing error for shout {shout.id}: {e}")
2024-04-08 07:23:54 +00:00
async def bulk_index(self, shouts):
"""Index multiple documents across three separate endpoints"""
if not self.available or not shouts:
logger.warning(
f"Bulk indexing skipped: available={self.available}, shouts_count={len(shouts) if shouts else 0}"
)
return
start_time = time.time()
logger.info(f"Starting multi-endpoint bulk indexing of {len(shouts)} documents")
# Prepare documents for different endpoints
title_docs = []
body_docs = []
author_docs = {} # Use dict to prevent duplicate authors
total_skipped = 0
for shout in shouts:
try:
# 1. Process title documents
if (
hasattr(shout, "title")
and shout.title
and isinstance(shout.title, str)
):
title_docs.append(
{"id": str(shout.id), "title": shout.title.strip()}
)
# 2. Process body documents (subtitle, lead, body)
body_text_parts = []
for field_name in ["subtitle", "lead", "body"]:
field_value = getattr(shout, field_name, None)
if (
field_value
and isinstance(field_value, str)
and field_value.strip()
):
body_text_parts.append(field_value.strip())
# Process media content if available
media = getattr(shout, "media", None)
if media:
if isinstance(media, str):
try:
media_json = json.loads(media)
if isinstance(media_json, dict):
if "title" in media_json:
body_text_parts.append(media_json["title"])
if "body" in media_json:
body_text_parts.append(media_json["body"])
except json.JSONDecodeError:
body_text_parts.append(media)
elif isinstance(media, dict):
if "title" in media:
body_text_parts.append(media["title"])
if "body" in media:
body_text_parts.append(media["body"])
# Only add body document if we have body text
if body_text_parts:
body_text = " ".join(body_text_parts)
# Truncate if too long
MAX_TEXT_LENGTH = 4000
if len(body_text) > MAX_TEXT_LENGTH:
body_text = body_text[:MAX_TEXT_LENGTH]
body_docs.append({"id": str(shout.id), "body": body_text})
# 3. Process authors if available
authors = getattr(shout, "authors", [])
for author in authors:
author_id = str(getattr(author, "id", 0))
if not author_id or author_id == "0":
continue
# Skip if we've already processed this author
if author_id in author_docs:
continue
name = getattr(author, "name", "")
# Combine bio and about fields
bio_parts = []
bio = getattr(author, "bio", "")
if bio and isinstance(bio, str):
bio_parts.append(bio.strip())
about = getattr(author, "about", "")
if about and isinstance(about, str):
bio_parts.append(about.strip())
combined_bio = " ".join(bio_parts)
# Only add if we have author data
if name:
author_docs[author_id] = {
"id": author_id,
"name": name,
"bio": combined_bio,
}
except Exception as e:
logger.error(
f"Error processing shout {getattr(shout, 'id', 'unknown')} for indexing: {e}"
)
total_skipped += 1
# Convert author dict to list
author_docs_list = list(author_docs.values())
# Log indexing started message
logger.info("indexing started...")
# Process each endpoint in parallel
indexing_tasks = [
self._index_endpoint(title_docs, "/bulk-index-titles", "title"),
self._index_endpoint(body_docs, "/bulk-index-bodies", "body"),
self._index_endpoint(author_docs_list, "/bulk-index-authors", "author"),
]
await asyncio.gather(*indexing_tasks)
elapsed = time.time() - start_time
logger.info(
f"Multi-endpoint indexing completed in {elapsed:.2f}s: "
f"{len(title_docs)} titles, {len(body_docs)} bodies, {len(author_docs_list)} authors, "
f"{total_skipped} shouts skipped"
)
async def _index_endpoint(self, documents, endpoint, doc_type):
"""Process and index documents to a specific endpoint"""
if not documents:
logger.info(f"No {doc_type} documents to index")
return
logger.info(f"Indexing {len(documents)} {doc_type} documents")
# Categorize documents by size
small_docs, medium_docs, large_docs = self._categorize_by_size(
documents, doc_type
)
# Process each category with appropriate batch sizes
batch_sizes = {
"small": min(MAX_BATCH_SIZE, 15),
"medium": min(MAX_BATCH_SIZE, 10),
"large": min(MAX_BATCH_SIZE, 3),
}
for category, docs in [
("small", small_docs),
("medium", medium_docs),
("large", large_docs),
]:
if docs:
batch_size = batch_sizes[category]
await self._process_batches(
docs, batch_size, endpoint, f"{doc_type}-{category}"
)
def _categorize_by_size(self, documents, doc_type):
"""Categorize documents by size for optimized batch processing"""
small_docs = []
medium_docs = []
large_docs = []
for doc in documents:
# Extract relevant text based on document type
if doc_type == "title":
text = doc.get("title", "")
elif doc_type == "body":
text = doc.get("body", "")
else: # author
# For authors, consider both name and bio length
text = doc.get("name", "") + " " + doc.get("bio", "")
text_len = len(text)
if text_len > 5000:
large_docs.append(doc)
elif text_len > 2000:
medium_docs.append(doc)
else:
small_docs.append(doc)
logger.info(
f"{doc_type.capitalize()} documents categorized: {len(small_docs)} small, {len(medium_docs)} medium, {len(large_docs)} large"
)
return small_docs, medium_docs, large_docs
async def _process_batches(self, documents, batch_size, endpoint, batch_prefix):
"""Process document batches with retry logic"""
for i in range(0, len(documents), batch_size):
batch = documents[i : i + batch_size]
batch_id = f"{batch_prefix}-{i//batch_size + 1}"
retry_count = 0
max_retries = 3
success = False
while not success and retry_count < max_retries:
try:
response = await self.index_client.post(
endpoint, json=batch, timeout=90.0
)
if response.status_code == 422:
error_detail = response.json()
logger.error(
f"Validation error from search service for batch {batch_id}: {self._truncate_error_detail(error_detail)}"
)
break
response.raise_for_status()
success = True
except Exception as e:
retry_count += 1
if retry_count >= max_retries:
if len(batch) > 1:
mid = len(batch) // 2
await self._process_batches(
batch[:mid],
batch_size // 2,
endpoint,
f"{batch_prefix}-{i//batch_size}-A",
)
await self._process_batches(
batch[mid:],
batch_size // 2,
endpoint,
f"{batch_prefix}-{i//batch_size}-B",
)
else:
logger.error(
f"Failed to index single document in batch {batch_id} after {max_retries} attempts: {str(e)}"
)
break
wait_time = (2**retry_count) + (random.random() * 0.5)
await asyncio.sleep(wait_time)
def _truncate_error_detail(self, error_detail):
"""Truncate error details for logging"""
truncated_detail = (
error_detail.copy() if isinstance(error_detail, dict) else error_detail
)
if (
isinstance(truncated_detail, dict)
and "detail" in truncated_detail
and isinstance(truncated_detail["detail"], list)
):
for i, item in enumerate(truncated_detail["detail"]):
if isinstance(item, dict) and "input" in item:
if isinstance(item["input"], dict) and any(
k in item["input"] for k in ["documents", "text"]
):
if "documents" in item["input"] and isinstance(
item["input"]["documents"], list
):
for j, doc in enumerate(item["input"]["documents"]):
if (
"text" in doc
and isinstance(doc["text"], str)
and len(doc["text"]) > 100
):
item["input"]["documents"][j][
"text"
] = f"{doc['text'][:100]}... [truncated, total {len(doc['text'])} chars]"
if (
"text" in item["input"]
and isinstance(item["input"]["text"], str)
and len(item["input"]["text"]) > 100
):
item["input"][
"text"
] = f"{item['input']['text'][:100]}... [truncated, total {len(item['input']['text'])} chars]"
return truncated_detail
async def search(self, text, limit, offset):
"""Search documents"""
if not self.available:
2024-11-22 17:32:14 +00:00
return []
if not isinstance(text, str) or not text.strip():
2025-04-23 21:24:00 +00:00
return []
logger.info(f"Searching for: '{text}' (limit={limit}, offset={offset})")
# Check if we can serve from cache
2025-04-23 21:24:00 +00:00
if SEARCH_CACHE_ENABLED:
has_cache = await self.cache.has_query(text)
if has_cache:
cached_results = await self.cache.get(text, limit, offset)
if cached_results is not None:
return cached_results
# Not in cache or cache disabled, perform new search
2025-04-23 21:24:00 +00:00
try:
search_limit = limit
if SEARCH_CACHE_ENABLED:
search_limit = SEARCH_PREFETCH_SIZE
else:
search_limit = limit
response = await self.client.post(
"/search-combined",
json={"text": text, "limit": search_limit},
)
response.raise_for_status()
result = response.json()
formatted_results = result.get("results", [])
# filter out nonnumeric IDs
valid_results = [r for r in formatted_results if r.get("id", "").isdigit()]
if len(valid_results) != len(formatted_results):
formatted_results = valid_results
if len(valid_results) != len(formatted_results):
formatted_results = valid_results
if SEARCH_CACHE_ENABLED:
# Store the full prefetch batch, then page it
await self.cache.store(text, formatted_results)
return await self.cache.get(text, limit, offset)
return formatted_results
2025-04-23 21:24:00 +00:00
except Exception as e:
logger.error(f"Search error for '{text}': {e}", exc_info=True)
2025-04-23 21:24:00 +00:00
return []
2025-04-23 21:24:00 +00:00
async def search_authors(self, text, limit=10, offset=0):
"""Search only for authors using the specialized endpoint"""
if not self.available or not text.strip():
return []
2025-04-23 21:24:00 +00:00
cache_key = f"author:{text}"
2025-04-23 21:24:00 +00:00
# Try cache first if enabled
if SEARCH_CACHE_ENABLED:
if await self.cache.has_query(cache_key):
return await self.cache.get(cache_key, limit, offset)
2025-04-23 21:24:00 +00:00
try:
logger.info(
f"Searching authors for: '{text}' (limit={limit}, offset={offset})"
)
2025-04-23 21:24:00 +00:00
response = await self.client.post(
"/search-author", json={"text": text, "limit": limit + offset}
2025-04-23 21:24:00 +00:00
)
response.raise_for_status()
2025-04-23 21:24:00 +00:00
result = response.json()
author_results = result.get("results", [])
2025-04-23 21:24:00 +00:00
# Store in cache if enabled
if SEARCH_CACHE_ENABLED:
2025-04-23 21:24:00 +00:00
await self.cache.store(cache_key, author_results)
2025-04-23 21:24:00 +00:00
# Apply offset/limit
return author_results[offset : offset + limit]
except Exception as e:
2025-04-23 21:24:00 +00:00
logger.error(f"Error searching authors for '{text}': {e}")
return []
async def check_index_status(self):
"""Get detailed statistics about the search index health"""
if not self.available:
return {"status": "disabled"}
try:
response = await self.client.get("/index-status")
response.raise_for_status()
result = response.json()
if result.get("consistency", {}).get("status") != "ok":
null_count = result.get("consistency", {}).get(
"null_embeddings_count", 0
)
if null_count > 0:
logger.warning(f"Found {null_count} documents with NULL embeddings")
return result
except Exception as e:
logger.error(f"Failed to check index status: {e}")
return {"status": "error", "message": str(e)}
2024-01-29 00:27:30 +00:00
# Create the search service singleton
2024-01-29 03:42:02 +00:00
search_service = SearchService()
2024-01-29 01:41:46 +00:00
# API-compatible function to perform a search
2025-04-23 21:24:00 +00:00
async def search_text(text: str, limit: int = 200, offset: int = 0):
payload = []
2025-04-23 21:24:00 +00:00
if search_service.available:
payload = await search_service.search(text, limit, offset)
return payload
2025-04-23 21:24:00 +00:00
2025-04-23 21:24:00 +00:00
async def search_author_text(text: str, limit: int = 10, offset: int = 0):
"""Search authors API helper function"""
if search_service.available:
return await search_service.search_authors(text, limit, offset)
return []
async def get_search_count(text: str):
2025-04-23 21:24:00 +00:00
"""Get count of title search results"""
if not search_service.available:
return 0
if SEARCH_CACHE_ENABLED and await search_service.cache.has_query(text):
return await search_service.cache.get_total_count(text)
2025-04-23 21:24:00 +00:00
# If not found in cache, fetch from endpoint
return len(await search_text(text, SEARCH_PREFETCH_SIZE, 0))
2025-04-23 21:24:00 +00:00
2025-04-23 21:24:00 +00:00
async def get_author_search_count(text: str):
"""Get count of author search results"""
if not search_service.available:
return 0
2025-04-23 21:24:00 +00:00
if SEARCH_CACHE_ENABLED:
cache_key = f"author:{text}"
if await search_service.cache.has_query(cache_key):
return await search_service.cache.get_total_count(cache_key)
2025-04-23 21:24:00 +00:00
# If not found in cache, fetch from endpoint
return len(await search_author_text(text, SEARCH_PREFETCH_SIZE, 0))
2024-12-11 20:02:14 +00:00
async def initialize_search_index(shouts_data):
"""Initialize search index with existing data during application startup"""
if not SEARCH_ENABLED:
return
if not shouts_data:
return
info = await search_service.info()
if info.get("status") in ["error", "unavailable", "disabled"]:
return
index_stats = info.get("index_stats", {})
indexed_doc_count = index_stats.get("total_count", 0)
index_status = await search_service.check_index_status()
2025-04-07 14:41:48 +00:00
if index_status.get("status") == "inconsistent":
problem_ids = index_status.get("consistency", {}).get(
"null_embeddings_sample", []
)
if problem_ids:
problem_docs = [
shout for shout in shouts_data if str(shout.id) in problem_ids
]
if problem_docs:
await search_service.bulk_index(problem_docs)
# Only consider shouts with body content for body verification
def has_body_content(shout):
for field in ["subtitle", "lead", "body"]:
if (
getattr(shout, field, None)
and isinstance(getattr(shout, field, None), str)
and getattr(shout, field).strip()
):
return True
media = getattr(shout, "media", None)
if media:
if isinstance(media, str):
try:
media_json = json.loads(media)
if isinstance(media_json, dict) and (
media_json.get("title") or media_json.get("body")
):
return True
except Exception:
return True
elif isinstance(media, dict):
if media.get("title") or media.get("body"):
return True
return False
shouts_with_body = [shout for shout in shouts_data if has_body_content(shout)]
body_ids = [str(shout.id) for shout in shouts_with_body]
if abs(indexed_doc_count - len(shouts_data)) > 10:
doc_ids = [str(shout.id) for shout in shouts_data]
verification = await search_service.verify_docs(doc_ids)
if verification.get("status") == "error":
return
# Only reindex missing docs that actually have body content
missing_ids = [
mid for mid in verification.get("missing", []) if mid in body_ids
]
if missing_ids:
missing_docs = [
shout for shout in shouts_with_body if str(shout.id) in missing_ids
]
await search_service.bulk_index(missing_docs)
else:
2025-04-07 14:41:48 +00:00
pass
try:
test_query = "test"
2025-04-23 21:24:00 +00:00
# Use body search since that's most likely to return results
test_results = await search_text(test_query, 5)
if test_results:
categories = set()
for result in test_results:
result_id = result.get("id")
matching_shouts = [s for s in shouts_data if str(s.id) == result_id]
if matching_shouts and hasattr(matching_shouts[0], "category"):
categories.add(getattr(matching_shouts[0], "category", "unknown"))
except Exception as e:
2025-04-07 14:41:48 +00:00
pass